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Coulomb Coupling between Spatially Separated Electron and Hole Layers:
Generalized Random-Phase Approximation
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Coulomb coupling between spatially separated quasi-two-dimensional electron and hole gases is
studied as a function of temperature and/or electron (hole) gas density. Because of the exclusion
principle mainly electrons and holes of antiparatlet spin screen the electron-hole interaction at low
densities. The coupling is described by a generalized random-phase approximation which takes into
account exchange processes to all orders of the Hartree-Fock potential. The temperature dependence
of the transimpedance agrees very well with experiment for relatively high densities; its density
dependence agrees well for high densities and reasonably well for low and intermediate densities.

PACS numbers: 73.20.Dx

Coulomb coupling between two spatially separated
electron gases, when a current is driven through only
one of them, has been predicted [1] and observed [2, 3] to
inHuence the transport properties of the individual gases.
Recently, transport measurements have been reported [4]
in a system composed of a two-dimensional (2D) electron
gas (2DEG) and a 2D hole gas (2DHG). This system
was proposed in Ref. [5] and its properties in a mag-
netic field are of strong current interest [6]. The gases
are spatially separated by a barrier of width d = 200
A. . The barrier is high and thick enough to prevent tun-
neling and recombination but thin enough to allow for
sizable Coulomb interaction between carriers in different
gases. Current is allowed to How in the electron gas and a
drag voltage is developed and measured in the hole gas.
The calculated [4] random-phase approximation (RPA)
results for the temperature and density dependence of
the coupling were a factor of 5 to an order of magnitude
smaller than the experimental results for temperatures
(T) between 9 K and 50 K. A similar discrepancy be-
tween theory and experiment [3] in an electron-electron
system, for T & 7 K, has been explained, within BPA, by
a phonon-mediated Coulomb coupling important only at
these very low temperatures [7] and most pronounced for
equal electron densities. This mechanism cannot explain
the results of the electron-hole system since the temper-
atures of the experiment are high. Another mechanism
would be electron-hole binding but this was estimated [4]
to be very weak. So far there exists, to our knowledge,
no explanation of these results. In this Letter, we show
that at densities as low as 5 x 10 o/cm it is mainly elec-
trons and holes of antiparatlel spin that participate in the
screening of the Coulomb interaction since a portion [8,9]
of them with parallel spins do not screen the Coulomb in-
teraction due to the exclusion principle. Thus, the RPA
treatment of the Coulomb scattering [4, 7] overestimates
the screening and renders the coupling weaker. Using

a generalized RPA (GRPA) approach, which takes into
account exchange to all orders of the Hartree-Fock po-
tential, we obtain a very good agreement with the ex-
periment for the T dependence of the transimpedance, a
reasonable agreement for its density dependence at low
densities, and a good one at high densities.

We model the electron-hole system with two in'. nitely
deep quantum wells, of width 6, with their centers and
their closest edges separated by a distance a and d, re-
spectively. The many-body Hamiltonian describing this
system is

H(t) = H&(t) + H, (t) + H&, (t) + H, (t) + H, (t) . (&)

Here, H, is the Hamiltonian of the electrons in the drive
well and contains electron-electron, electron-impurity,
and electron-phonon interactions; the same holds for the
Hamiltonian of the holes in the drag well, Hh. Hp„ is the
Coulomb interaction between holes and electrons in the
two wells, H„ is the phonon Harniltonian, and H, the im-

purity Hamiltonian. For the densities of interest, only the
lowest subband is occupied in either well. Equation (1)
and the corresponding thermodynamic Green's function
lead [7] to the coupled momentum-balance equations:
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Here, V~ is the measured drag voltage, L the length of
the specimen, nh (n, ) the 2D hole density (electron den-
sity) of the drag (drive) well, j& (j,) the 2D current den-

sity, m,* (m&) the electron (hole) efFective mass, E the
electric field applied only in the drive well, and F' (F")
the frictional force due to phonon and impurity scatter-
ing with the electron (hole) gas. The term proportional
to VD develops when the current is not allowed to How
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in the hole well; if it is allowed to flow, this term van-
ishes identically. Ignoring the vertex corrections of the
three-point vertex function [see Eq. (149) of Ref. [10]],
the self-energy of the holes is related to the nonequi-
librium screened interaction eh, and the nonequitibrium
hole Green's function as illustrated in Fig. 1(a). The
total force acting on the holes is
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where II" =— II" (1;3) (II') is the nonequitibrium hole

(electron) polarizability, and 8h, = vh, (1;3) is the
nonequitibrium screened interaction between holes in
the drag well and the medium (electrons in the drive
well, phonons, and impurities included). The arguments
in II"(1;2) and vh, (1;2) represent the correlation be-
tween the space-time coordinates (xr, tr ) and (xq, t2) and

f,
' d(3) is a shorthand for f dxs f,

' dts. The coupling

force due to Coulomb scattering F"' is given within RPA
by
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FIG. 1. (a) Self-energy diagram of holes in RPA; (b) ad-
ditional self-energy diagram of holes due to the exchange pro-
cess; (c) self-consistent screened potential in GRPA.

Fhe d(5) d(4) d(3) [8 (1;3)II' (3;4) V' 8 (4;5)II"(5;1) —II" (1;5)V 8+(1;3) II'(4;3)v (4;5)],
(5)

with 8h, + = 8&,+(1;3) the retarded (advanced) screened Coulomb interaction between holes in the drag well and the
electrons in the drive well, V~ standing for Vq operating to the leR. The Fourier component of the screened Coulomb
interaction can be written as v+(qll ~) = F(qll)v(qll )/s+(qil'~) where v(qll'&) = 2~e e q'~/qll with ( = qllb and
F(qll) the form factor [7]. The retarded (advanced) dielectric function e+( ) is given by

) = [
—

(qll o) F«II) "+"'«ll &)l[' —"(qll

—/v(qll, a) F(qll)/ II" (qll, u)II' (qll, cu),

where II"(o) (II'(o)) is the equilibrium hole (electron) polarizability.
For weak electric fields, we may write j, h = n, hpev&' with v~& (v&) the drift velocities, p = 1 for electrons,

and p = —1 for holes. Then the forces can be linearized over v& and v& giving F" = (Ah, + Ah„)mhv& and
F"' = Ah, mh(v& —v&). Here Qh„Ah„, and Ah, are the relaxation frequencies per unit area due to the Coulomb
coupling, phonon scattering, and impurity scattering, respectively. In the steady state and in the absence of the drag
current (jh = 0), Eq. (5) gives the transimpedance RT = VD/I, = mhAh, /e nhn, and the frequency
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with II+( = II+ )(qll, a). For T ) 10 K, Ah, behaves
approximately linearly with T as shown by the dashed
curve in Fig. 4. As is demonstrated in Figs. 2, 3, and 4,
and also in Ref. [4], there is a marked difference between
the RPA calculations and the experimental results. This
difference tends to be larger at lower densities as illus-
trated in Figs. 2 and 3. This is mainly due to the fact
that RPA is good [8, 9] only for very high densities. An
extra term [10],as shown in Fig. 1(b), should be included
in the self-energy for lower densities. This term takes into
account the exchange process of holes and electrons. It

can be ignored for high densities but not for low densities
as shown by Abrikosov, Gorkov, and Dzyaloshinski [11].
With this extra term, the screened Coulomb interaction
v(l; 2) is no longer a two-point but a three-point interac-
tion 8(1,2; 3) as expressed diagramatically in Fig. 1(c).
The diagrams in Fig. 1(c) represent the right-hand side
(RHS) of an equation whose left-hand side is equal to
the shaded triangle that represents 6. Thus 8 obeys an
integral equation. Within RPA the last diagram in Fig.
1(c) is absent. Solving this equation is equivalent to solv-

ing the equation of motion for the density operator to all
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FIG. 2. Transimpedance R~ per square vs electron den-
sity n, for three temperatures, with fixed hole density nh, =
5 x 10 /cm . The solid and dashed curves are the GRPA and
RPA results, respectively. The solid dots are the experimental
results of Ref. [4].

FIG. 3. Rz- per square vs hole density for three temper-
atures with fixed electron density n, = 5 x 10' /cm2. All
curves are marked as in Fig, 2.

orders in the Hartree-Fock potential as done by Nozieres
and Pines [8]. However, we need to know the nonequi-
librium polarizabilities. To simplify the problem, we do
an iteration in the coupling force F"' by letting F"' + 0
(the polarizabilities depend on this force) and find out
the relationship between the nonequilibrium H" and II'.
Then we use this relation to solve for 6. This procedure
is good only for the steady state and when phonon and
impurity scatterings are weak. This becomes obvious if
we let the current How in the hole system. Once the

system reaches a steady state, the momentum transfer
from the electrons should be balanced by phonon and
impurity scattering. If both phonon and impurity scat-
terings are weak, F"' 0. With this condition, Eq.
(5) gives II" II'. Further, to reduce the numerical
work, we assume, though the temperature is not too low,
that the main scattering occurs near the electron and
hole Fermi levels so that v(1, 2; 3) 8(l; 3)b(1; 2). With
these approximations, we solve the equation for 8 and
obtain 8+(q~~', u) = v(q;a)/e++(q~~', tu), where the GRPA
dielectric function e+( ) is

with

(q~~,
.
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(9)

The second term on the RHS of Eq. (9) is the exchange
term and occurs only for electrons (or holes) of parallel [8]
spin. As a result, only electrons (or holes) of antiparatlel
spin and a portion of electrons (or holes) of parallel spin
will participate, statistically speaking, in the screening
for qI~ && k~, i.e. , for low densities. Physically, this means
that a portion [depending on

q~~
in Eq. (9)] of electrons

(or holes) of the same spin will be kept apart by the
Pauli exclusion principle. For very low densities, they
can be so far apart that they have almost no e8'ect on
the screening at all. If carriers in both wells are of the
same type, we will have a factor of 1/2 in the exchange

[8] term instead of 1/4. This happens because there is no
exchange process between an electron and a hole. With
the obtained 8, Ah, takes the form of Eq. (7) with ey ( )
replaced by e+( ).

The calculated GRPA and RPA results for the trans-
impedance BT are shown in Figs. 2—4 by the solid and
dashed curves, respectively. In Fig. 2 BT is shown as
a function of electron density n, for fixed hole density
ng and in Fig. 3 as a function of nh for fixed n, . The
solid symbols are the experimental results of Ref. [4]. We
have used mh ——6.7m,* and the parameters of the exper-
iment. Noticing the logarithmic scale in Figs. 2 and 3 it
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FIG. 4. RT per square vs temperature for fixed densities.
Curves e-h: n, = 2 x 10 /cm; nh = 5 x 10 /cm . Curves
e-e: in both wells n = 1.5 x 10 /cm . All curves are marked
as ln Flg. 2.

is seen that the density dependence of the GRPA RT is

(i) significantly better than the RPA result, (ii) reason-
ably good at low densities, (iii) very good at relatively
high electron densities, and (iv) reasonably good for high
hole densities. For intermediate densities the GRPA re-
sult is smaller than the experimental one. The better
agreement at high densities is due to the approximation
6(l, 2, 3) = 8(l; 3)h'(I, 2) that becomes increasingly bet-
ter as the density increases and the gases become more
degenerate. On the other hand, the temperature depen-
dence of the GRPA RT (solid e-h curves), at relatively
high densities, shown in Fig. 4, is in very good agreement
with the experimental result. For contrast we also show

BT for the same structure with electrons in both wells
(e-e curves) and equal densities n, = 1.5 x 10ii/cm2.
The difFerence between the GRPA and RPA results is
less pronounced than in the electron-hole system at low
temperatures mainly because both electron densities are
rather high since, as we have verified, the efFective-mass
dependence of BT is very weak.

At low to moderate densities our GRPA results show
a stronger T dependence than the experimental ones. A
possible explanation is that at the high temperatures of
the experiment the particle wave function spreads due
to the increase in the kinetic energy which acts against
the confining potential or electric field E~, Lt = e, h. This
corresponds to efFectively temperature dependent well
widths. Equating the pressure exerted by the gases [12]
Pt ——n& k~ro, ~ with that by the field Et we obtain
di = dio + nik~T/eEi, where die is the T = 0 width.
In GRPA at = 1 —(3/72)erron& +B(ni ) and B( ) is

a positive function that vanishes at high densities. Thus
ni and di increase at low densities and so does the mean
separation a between electrons and holes. This leads to
a decrease in RT approximately compensated by the in-
crease shown in Figs. 2, 3, and 4.

In all cases the RPA results are significantly below the
experimental or GRPA results since RPA overestimates
screening. Also, they differ from those of the experiment
by a factor of 2 rather than a factor of 5 as reported by
Sivan, Solomon, and Shtrikman [4]. This is because the
quantum wells have finite thickness [F(q~~) ( 1] in our
case and zero [F(qI~) = 1] in theirs.

In summary, we have shown that the reported [4] de-
viations of density and temperature dependences of the
Coulomb coupling between an electron gas and a hole
gas, spatially separated from each other, from the RPA
results are mostly due to an overestimation of the screen-
ing when treated within RPA. Most of the results, espe-
cially the temperature dependence, can be explained by
employing a GRPA which takes into account exchange
processes, absent from RPA, in the two wells to all or-
ders of the Hartree-Fock potential.
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