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Two concentric two-dimensional GaAs/(Al,Ga)As nanorings in a normal magnetic field are theoretically
studied. The single-band effective mass approximation is adopted for both the electron and the hole states, and
the analytical solutions are given. We find that the electronic single particle states are arranged in pairs, which
exhibit anticrossings and the orbital momentum transitions in the energy spectrum when magnetic field increases.
Their period is essentially determined by the radius of the outer ring. The oscillator strength for interband
transitions is strongly reduced close to each anticrossing. We show that an optical excitonic Aharonov—-Bohm

effect may occur in concentric nanorings.

PACS numbers: 73.21.La, 78.67.Hc

1. Introduction

The shape of a nanodot depends on the growth
method. An interesting example is the one in the shape of
a ring [1-3], which shows oscillations in the electron and
hole ground state energy with varying magnetic field [4].
The oscillations are due to the Aharonov-Bohm effect,
which is the result of double connected topology of the
ring and wave nature of the charge carriers [5]. Different
spectroscopic techniques confirm such orbital momentum
transitions in nanorings [4], which give rise to oscilla-
tions in the ground electron energy. These nanorings
have typical lateral dimensions of the order of 10 nm,
while they are only a few nm high [6]. Their fabrica-
tion allows the exploration of topological effects even
for neutral systems, such as excitons [7]. The ezcitonic
and optical excitonic Aharonov—Bohm effects have been
recently explored both theoretically and experimentally
[8, 9]. The former effect is demonstrated by oscillations
of the ground exciton state as a function of the magnetic
field [7], whereas the latter effect is an optical property of
the exciton [10]: the transitions between the single par-
ticle states of different orbital momenta may turn from
bright to dark. The optical excitonic Aharonov—Bohm
effect was predicted for two concentric one-dimensional
(1D) rings [10].

There has been a growing interest in systems of mul-
tiple quantum rings, including concentric rings [11-14],
vertically stacked rings [3, 15], and ring arrays [16]. Dou-
ble concentric nanorings have been recently fabricated
by the modified droplet epitaxy technique [11]. These
rings are made of GaAs embedded in a (Al,Ga)As ma-
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trix, and show negligible deviations from axial symmetry
[11, 12]. Also, their size and shape in the realized en-
sembles exhibit high uniformity, which makes them suit-
able for photonic applications [13]. A recent theoretical
study of two electrons confined in such concentric rings
indicated that the periodicity of the Aharonov—Bohm os-
cillations strongly depends on the width of the barrier
between the rings [14].

In this paper, we explore the electronic structure and
the interband optical properties of the electron and the
hole in two concentric GaAs/(Al,Ga)As nanorings. We
adopt the effective-mass theory and the adiabatic ap-
proximation to compute the single particle states. The
adiabatic approximation is suitable because the rings
height is much smaller than their lateral dimensions. The
Schrodinger equation is solved analytically. A normal
magnetic field through the rings is varied in order to ex-
plore how the energy levels and the oscillator strength are
affected by the coupling between two rings. Two rings are
shown schematically along with the confinement poten-
tial profiles in the conduction and the valence band in
Fig. 1. The inner radii of two rings are denoted by p;
and ps while the outer radii are denoted by ps and py4.
The confining potential assumed in our model has the
rectangular shape. Such a choice differs from our pre-
vious work [14], where the parabolic-like potential was
assumed.

The paper is organized as follows. The theory of the
electron and hole states is presented in Sect. 2. The nu-
merical results are presented and discussed in Sect. 3.

2. Theory

We consider two-dimensional concentric rings, located
in the xy plane. A magnetic field is applied along the
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Fig. 1. A schematic view of two concentric quantum
rings, and the confinement potentials in the conduction
and the valence band.

z direction and cylindrical coordinates are used. The
single—band effective mass Hamiltonian in the adiabatic
approximation is used for both the electron and hole
states. Even though much more elaborate models can
be employed [17], the small height of the fabricated rings
brings about large splitting between the heavy and light
hole levels, and therefore mixing between them is re-
duced. Furthermore, the large band gap of GaAs, which
is assumed to be a material of the ring, justifies use of
the single-band approximation in the conduction band.
The two dimensional Hamiltonian, for in plane motion,
is given by

H = (P—qA)5 —(P~qA)+ V(). (1)

Here m* denotes the position dependent effective mass of
the particle, A is the magnetic vector potential, g is the
elementary charge (¢ = —e for the electron and ¢ = +e
for the heavy and light holes), and V(p) is the confine-
ment potential in the radial direction. For a uniform
magnetic field, the vector potential can be written as
A = B x r/2, which leads to the Schrodinger equation:

(10 (p 0¥y, 1 5w By
2 \pOp \'m* dp m*p2 P2 2m* 9¢
m* (qB/m*)* p?

+ v V(p) - ElP = 0. 2)

The axial symmetry of the Hamiltonian allows for the
factorization of the wave function,

oild
Wn,l(pa (b) = ERn,l(p) s

and the differential equation for the radial part of the
wave function is easily derived,

_hj 0 (1 0Rny N 1 10R,, 12
2 \Op \m* Op ot

mp dp P2
hlw, m*w?p?
£ o Rt s R4 [V(p) =Ry = 0, (4)
where w. = |¢B/m*| is the position dependent cyclotron

frequency. The upper and the lower sign are for the elec-

1=0,41,+2,43,...,(3)

tron and the hole, respectively. If we use the dimension-
less variable & = eBp?/(2h), the differential equation for
the radial wave function becomes

ER, (&) + Ry, (6)

E-V(E 12 1 ¢ B
+ <wég i€ T34 Rpa(§) =0 (5)
in the well (8 = w) and the barrier (3 = b). Equation (5)
admits solutions of the form

Roa(&) = e 221 (6) . (6)
The function f,; () satisfy the equation
Efni(©) + (0= &) f1(8) — afna(§) =0, (7)

where ag = |I|/2 +1/2 +1/2 + (V5 — E)/(hw?), and
b =|l| + 1. The general solution of this equation may be
expressed as a linear combination of the confluent hyper-
geometric functions of the first kind and the second kind,
M, and U, , respectively:

fn,l(f) = AMTLJ(O“’ b, 5) + BUn,l(av b, g) . (8)
Applying the boundary conditions
Ry i(pi’) = Rua(pi), (9)
1 dR, 1 dR,
e g ol = — L , (10)
m*(p) dp |,_,-  m*(p) dp |,_,+

at the interfaces between the rings and the matrix, a set
of eight algebaric equations is obtained, from which the
eigenenergies are extracted.

The oscillator strength for interband transitions is
given by [18]:

Fe 2
moEye

where mg denotes the free electron mass, Ey. = |ES345|+
ECGaAS + EgGaAS, and M., is the transition matrix ele-
ment between the states in the conduction and the va-
lence band, which is given by

|MCV|27 (11)

moP
MCV = %6&7,—&@
o0 —+oo
<[ st [ 220, (12)
p=0 z=—00

where P is the Kane interband matrix element and Z ;.
are the z-dependent wavefunctions of the ground elec-
tron and hole states. The later are extracted from the
z-dependent Schrodinger equation, for the rectangular
(hard-wall) potential. Such an adiabatic (single-sublevel)
approximation is justified by small height of the fabri-
cated rings.

3. Results and discussion

The energies of the band extrema in GaAs are taken
as reference levels. The effective mass of the elec-
tron in GaAs is 0.067mg, whereas the heavy and light
hole effective masses are 0.45mg and 0.082mg, respec-
tively [19]. The effective masses in the Al,Ga;_, As alloy
are computed as (0.067 + 0.083x)my, (0.45 + 0.2z)my,
and (0.082 + 0.068x)my for the electron, the heavy hole,
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and the light hole, respectively. The conduction band
offset amounts to 0.7482z eV, while the valence band
offset is 0.4988z eV. For the mole fraction we assume
x = 0.3. In our calculations, the inner ring has the inner
and outer radii of p; = 20 nm and ps = 30 nm, respec-
tively, while the radii of the outer ring are p3 = 35 nm
and py = 45 nm. We assume that the rings are h = 4 nm
high.

Energy [meV]

Energy [meV]

P
36\\,/

777 7

(c) 1igh't Wole ,,' }

34\ of / !y
\

Energy [meV]

Fig. 2. Energy levels in (a) the conduction, (b) the
heavy hole and (c) the light hole band for [ in the range
[—4,4] as function of a normal magnetic field. The L
states are shown by the solid lines, whereas the dashed
lines denote the H states. The spectrum near anticross-
ings between the heavy hole states is enlarged and shown
in inset.

The magnetic field dependence of the electron, heavy
hole, and light hole energies for [ in the range [—4, +4]
are shown in Figs. 2(a)—(c). All states at B = 0, except
the [ = 0 states, are double degenerate, i.e. E(l) = E(-l).
Furthermore, for each orbital momentum, except [ = 0,
the wave function of the lowest energy state (L state,
shown by the solid line) is mainly localized inside the
large ring at B = 0. On the other hand, the higher
energy states (H states, shown by the dashed lines) for
all I (except | = 0) have their wave functions located
mainly inside the small ring. Figure 2 shows that the

splitting between the L and H states at B = 0 increases
with |l|. Furthermore, the L states anticross the respec-
tive H states at a certain value of the magnetic field. In-
terestingly, the anticrossings in both the conduction and
the valence band take place at nearly the same value of
the magnetic field. Hence, the locations of the anticross-
ings are determined by the topology (the ring size) rather
than the band structure of the constituent semiconduc-
tors (the effective masses, the band offsets etc.). These
anticrossings shift towards larger B when [ increases.

The energy spectra shown in Fig. 2 may be related to
the energy spectra of two concentric 1D rings separated
by an infinite barrier. The first energy minimum in each
L state of a given [ corresponds to an integer number of
flux quanta threading the 1D ring whose radius is given
by

2h|1|
Bmln qR%D b (]‘3)

where R = (p3 + psps + p3)/3 is the Heronian mean.
The second minimum is also described by Eq. (13), but
Rip is computed as \/(p3 + p1p2 + p3)/3. All ground
states in Figs. 2a-(c) exhibit Aharonov—Bohm oscilla-
tions. Their period mainly depends on the dimensions
of the outer ring, but the oscillations in the concentric
rings are less regular than in the single ring [5]. This
might be ascribed to a change of localization of the elec-
tron and the hole from the large ring to the small ring
when the magnetic field increases, and was recently con-
firmed experimentally [20].
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Fig. 3. The probability density of (a) the L and (b) H
state in the conduction band for [ = —4 and for a few
characteristic values of magnetic field in Fig. 2a.

The probability density in the L electron states of the
angular momentum ! = —4 is shown in Fig. 3a, for few
characteristic values in Fig. 2a. It shows the electron
density for the magnetic field values around the first en-
ergy minimum (3.3 T), the second minimum (8.33 T),
the anticrossing (5.43 T), and for the limiting points of
the explored range, 0 and 10 T. When the magnetic field
is lower than 3.3 T, the electron is almost fully localized
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in the outer ring. When B increases further, the proba-
bility density in the inner ring increases, and at 5.43 T,
the probabilities of finding electron in the inner and outer
ring are comparable. At the position of the second min-
imum, the electron in the L state is almost completely
localized inside the inner ring. Further increase of B
causes a shift of the maximum of the probability density
towards the inner radius of the inner ring. Figure 3b
shows the probability density in the H state for | = —4
and for a few characteristic points in Fig. 2a.
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Fig. 4. The oscillator strength for the interband opti-
cal transitions between the lowest energy states of the
electron and the heavy hole of the opposite orbital mo-
mentum (I, = —l.) as function of a normal magnetic
field. Inset shows the oscillator strength for the transi-
tions between the ground states of the electron and the
heavy hole.

Figure 4 shows the oscillator strength for interband
transitions between the L states in the conduction band
and the heavy hole band. The oscillator strength for each
transition shown in Fig. 4 have a local minimum around
the anticrossing. The minimum arises from different lo-
calizations of the wave functions in the conduction and
valence band around anticrossing when magnetic field
varies. The L states in the conduction band show signifi-
cant tunneling through the barrier between the two rings,
while the heavy hole states are mostly localized inside
the rings. Furthermore, by comparing Figs. 2a, b, and
Fig. 4 we may conclude that the oscillator strength for
the transition between the lowest optically active states
oscillates, which has been recently confirmed by solving
the exciton kinetic equation [21]. Even though we do not
take into account the Coulomb interaction between the
electron and the hole, we infer that the optical excitonic
Aharonov-Bohm effect might be present in the analyzed
system.

The oscillator strength for the interband transitions
between the electron and the heavy—hole ground states
is shown in inset of Fig. 4. We find that the ground
exciton state can become completely dark in a narrow
range of B, where the oscillator strength exhibits min-
ima. These minima take place close to orbital momen-
tum transitions in both the electron and the heavy-hole

ground states (see Figs. 2a and 2(b)). These results im-
ply that bright and dark exciton states could alternate
in the ground state when magnetic field varies. How-
ever, in order to realize such a behavior, the effects of
Coulomb interaction should be small. Simple analytical
analysis shows that in large rings, where the dimension of
the structure is larger than the effective Bohr radius, the
motion becomes strongly correlated in a tightly—bound
exciton [10]. This is indeed the case in the analyzed struc-
ture, where both the rings radii are larger than the effec-
tive Bohr radius, which is approximately equal to 12 nm
in GaAs. A rigorous inclusion of the Coulomb interac-
tion demonstrated that the optical excitonic Aharonov—
Bohm oscillations are also suppressed in the regime of
week interaction [22], which exists in small rings. How-
ever, calculation of the exciton states is beyond scope of
the present work.

4. Summary and conclusion

The effects of a normal magnetic field on the electron
and the hole states confined in double concentric type-I
nanorings are studied theoretically. The wave functions
of the lowest energy electron states are mostly localized
inside the outer ring. When the magnetic field is ap-
plied, the electron states relocate from the outer ring
to the inner ring. Furthermore, anticrossings between
states located in different rings appear, which make the
Aharonov—Bohm oscillations less regular than in the case
of single ring. We showed that the oscillator strength
for interband optical transitions between the lowest opti-
cally active states varies oscillatory with magnetic field.
This effect arises from a strong reduction of the oscilla-
tor strength in narrow ranges of magnetic field close to
anticrossings between the [ states.
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