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Novel Commensurability Effects in Superconducting Films with Antidot Arrays
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Vortex configurations in superconducting films with regular arrays of antidots (holes) are calculated
within the nonlinear Ginzburg-Landau theory. In addition to the well-established matching phenomena,
we predict (i) the nucleation of giant-vortex states between the antidots, (ii) the combination of giant- and
multivortices at rational matching fields, and (iii) for particular values of the vorticity, symmetry imposed

creation of vortex-antivortex configurations.
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Periodically engineered systems with an energy land-
scape with many degenerate minima can be found in
various areas of physics and they often exhibit mutually
common phenomena. Typical examples are the colloidal
crystals on periodic substrates or light arrays [1], biomo-
lecular chains formed in an array of obstacles [2], ordering
of atoms and molecules adsorbed on corrugated surfaces
[3], the electron configurations in arrays of quantum dots
(i.e., “quantum cellular automata” [4]), or lattices of su-
perfluid vortices in Bose-Einstein condensates interacting
with periodic optical traps [5].

In superconductivity, a similar system has been realized
in films with regular arrays of holes (antidots). Namely,
direct imaging experiments [6], magnetization, transport,
and ac-susceptibility measurements [7] have shown that
the flux lines form highly ordered configurations at integer
H, = n®,/S and at some fractional H,;, = g(l)o/S (n, p,

g being integers) ‘“matching’ magnetic fields (here ®, =
hc/2e is the flux quantum, and S is the area of the unit cell
of the antidot lattice). These commensurability effects
between the pinning and the vortex lattice have also tech-
nological relevance, as the collective locking of vortices to
the pinning sites causes enhanced critical current of the
sample.

Following the experimental studies, extensive molecular
dynamics simulations (see Ref. [8] and references therein)
have been performed within the London limit to study the
vortex configurations and their dynamics in a periodic
pinning potential. Those vortices were crudely considered
as classical point particles and the pinning was simply
introduced through a model attractive potential. Since
vortices are extended objects which interact in a nontrivial
way with the antidot lattice, we here apply the full
Ginzburg-Landau (GL) theory, which allows for any vortex
rearrangement, their merging, coupling, and any other
feature imposed by the geometry and/or pinning strength
of the antidot lattice. As will be shown in this Letter, such
features lead to novel commensurability phenomena and
unanticipated vortex structures.

The superconducting (SC) state in our formalism is
described by the Gibbs energy functional, which takes

0031-9007/06/96(20)/207001(4)

207001-1

PACS numbers: 74.78.Na, 74.20.De, 74.25.Dw, 74.25.Qt

into account not only the intrinsic energy of the sample,
but also the energy contribution due to the deformation of
the magnetic field lines around the superconductor. The
difference between the SC and the normal state Gibbs free
energy (G) can be expressed through the integral

H;
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+ 2(h — Ha)z}dV, (1)

where k denotes the GL parameter, a property of the given
material determining the screening of the external mag-
netic field H,. In Eq. (1), all distances are scaled by the
coherence length £, the vector potential A by ch/2eé, the
magnetic field h by H,, = ch/2e&? = kv/2H,., and the
order parameter ¢ by its equilibrium value in the absence
of the magnetic field. The minimization of Eq. (1) leads to
the well-known GL equations, which we averaged over the
SC thickness (being much smaller than the characteristic
lengths ¢ and A), mapped on a uniform Cartesian grid (with
more than 10 points per £), and solved self-consistently for
A and ¢ using the iterative procedure from Ref. [9] in
combination with the link-variable approach [10]. Our
simulation region is a Wg X W square, mostly with Wy =
4W where W is the period of the antidot lattice (i.e., we
simulate 4 X 4 unit cells; see Fig. 1). The periodicity of the
sample is included through the boundary conditions for A
and ¢ in the form A(r + €;) = A(r) + V{i(r), and ¢(r +
€;) = pexp(2mi;(r)/®,), where €, , are the lattice vec-
tors, and ¢; is the gauge potential fulfilling the Landau
gauge A, = H,xe, for the external vector potential (e.g.,
¢ = H,Wgy, {, = 0). Note that the chosen values of H,

FIG. 1 (color online). Oblique view of the system: the square
simulation region containing 4 X 4 unit cells.
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must provide the flux quantization per simulation area, as
required by the virial theorem [11].

Equilibrium vortex configurations.—We studied the vor-
tex structure of a SC film (with thickness d) with a square
array of circular holes (of radius R) exposed to a homoge-
neous magnetic field H, (see Fig. 1). For a given magnetic
field the final vortex configuration depends on the geomet-
rical parameters of the antidot lattice. As a representative
example, we constructed the equilibrium vortex phase
diagram for the forth matching field (H, = H,), as a
function of W and R, shown in Fig. 2 ford = 0.1¢ and k =
0.45. Out of 4 vortices per unit cell, N, vortices are
captured by the hole, and the remaining ones sit at inter-
stitial sites. From this phase diagram we notice (1) that the
occupation number (N,) of each hole depends not only on
the hole radius R (as discussed in previous works [12]), but
also on W, i.e., the proximity of the neighboring holes in
the lattice. (2) The final configuration of the flux lines is
determined not only by their mutual repulsion, but also by
the attraction by the antidots and the repulsion by their
pinned vortices. Therefore, instead of having an Abrikosov
lattice, for close spacing W (<15¢), the flux lines form
square-shaped lattices regardless of N, (see the insets on
the right of Fig. 2). Note that these configurations have
been observed experimentally using the Lorentz micros-
copy in Ref. [6]. (3) With decreasing period W, the inter-
stitial vortices become strongly caged between the

[ giant interstitial vortices
[ vortex-antivortex states N. =4
1 individual flux lines "

FIG. 2 (color online). The equilibrium vortex lattices at H, =
H,, as a function of the antidot radius (R) and the period of the
antidot lattice (W). The solid lines denote the first order tran-
sitions between the states with different antidot occupation
number (N,,), and dashed ones depict second order configura-
tional transformations. The insets denote the Cooper-pair density
plots [darkest color denotes vortices; white, antidots (blue/red or
dark gray/medium gray denotes low/high density)] of the corre-
sponding states (open dots are a guide to the eye indicating the
position of the zeros of the order parameter).

neighboring antidots, resulting in the disruption of the
individual-vortex lattice. The best example is the part of
the diagram for N, = 1, where the caging effect first
causes the formation of triangular multivortices (MVs) at
interstitials, with chosen orientation that minimizes the
energy between the neighboring cells. However, these
triangular structures do not follow the imposed square
symmetry, and with further decrease of W, the confinement
causes the formation of the giant-vortex (GV) at each
interstitial site (see corresponding area in Fig. 2). Note
that in bulk superconductors and nonstructured films the
energy of a collection of single vortices has always lower
energy than a multiple vortex. The GV state was predicted
previously for SC disks [9] and recently detected experi-
mentally [13]. This is the first time that such a state is
anticipated for an open geometry, where now the symmetry
of the pinning lattice (antidots) forces the interstitial vor-
tices into a giant one. (4) Surprisingly, there is a small area
in the phase diagram where a vortex-antivortex (VAV) pair
is created, resulting in a configuration with 4 vortices in a
square MV, with an antivortex in the center (resulting in
five zeros of the order parameter, see the leftmost inset of
Fig. 2). These symmetry imposed VAV states are related to
the ones found in finite SC polygons [14—-16]. As a novelty,
we realized VAV states in an open structure, where their
fourfold symmetry conforms with the antidot lattice, con-
trary to the incommensurate triangular vortex arrangement
(see insets of Fig. 2). This commensurability in geometry
between the antidot lattice and the vortex lattice is a direct
consequence of the competing effects between the vortex
currents and the screening currents maximal around the
antidots (i.e., sample edges). While they are forced to
coexist, these currents interfere and compensate each other
for small period W. Intuitively, lowest resulting currents
(and lowest energy state) are achieved for aligned symme-
tries of antidot and vortex lattices.

In order to verify these findings, and to show they are not
peculiar for one chosen field, we repeated our analysis for
the rational matching field H, = Hy/,. The ground state
W-R diagram is shown in Fig. 3. For sufficient spacing
between the antidots, the vortex configuration consists of
individual vortices, where a kind of vortex lattice is estab-
lished by one extra vortex (compared to H, = H,) being
shared between the adjacent cells. Alternatively, every
other interstitial site contains this extra vortex (at each
site a MV is formed, but with different vorticity). As a
consequence, for a dense antidot lattice, the confinement or
symmetry does not act equally on adjacent cells—e.g., for
N, = 1, at one site MV with vorticity 4 obeys the imposed
symmetry, whereas the neighboring triple vortex is com-
pressed into a giant form [Fig. 3(a)]. The simultaneous
presence of a stable giant and a multivortex is unique and
has never been predicted before. For N, = 2, 3 vortices at
one of the interstitials are not favored by symmetry
[Fig. 3(d)], and for small spacing W a VAV configuration
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FIG. 3 (color online).

The ground-state vortex lattices at H, = Hy, fractional matching field (same notation as in Fig. 2 is used).

(e)—(f) show the phase of the order parameter (see enclosed scale) of the bottom-left unit cell for the vortex configurations depicted in

(c) and (d), respectively.

is induced, in combination with a giant vortex at adjacent
site [Fig. 3(c)], illustrating the remarkable variety of pos-
sible vortex structures.

Influence of the GL parameter.—It is well known that the
GL parameter k = A/& (in thin superconductors, «* =
k?&/d) describes the affinity towards type-I or type-II
behavior. This GL parameter describes the effective inter-
action between the vortices. One of the energy terms in this
interaction directly depends on Ink, and therefore changes
sign when « is decreased. For that reason, although it was
shown that VAV configurations in type-II SC polygons are
very difficult to be distinguished (VAV spacing <0.25¢
[15]), Misko et al. [16] argued that VAVs are more distinct
and stable in type-I samples, due to the vortex-antivortex
repulsion. Motivated by this, we performed the same
analysis, and studied the behavior of the vortex structures
shown in Figs. 2 and 3 as a function of k. We found for
decreasing « that the vortex-vortex attraction dominates
the phase diagram, and three main features were observed:
(i) due to the attraction between the vortices in the holes
and the interstitial ones, the threshold hole radius for
capturing another vortex lowers (solid lines in Figs. 2
and 3 move to smaller R); (ii) the giant-vortex state be-
comes energetically favorable at the interstitials and
spreads over the majority of the W-R phase diagram;
(iii) due to fact (ii), the VAVs stability region shrinks,
and eventually disappears, contrary to the findings in finite
SC polygons.

Influence of temperature.—As follows from our formal-
ism [see Eq. (1)], all the sizes in our analysis so far were
expressed in units of the coherence length £. In order to
direct the experiment, we will now use conventional units
and introduce temperature in the calculation through the

&E(T) = £(0)//1 — T/T, dependence.

Figure 4(a) shows the H, — T equilibrium diagram for
the VAV state in a Pb sample [£(0) = 40 nm, k =~ 1] with
W =600 nm and R = 110 nm. For H, = H, and T =
0.85T, we are located in the middle of the VAV region of
Fig. 2. Notice that, e.g., for H, = Hs a new reentrant
behavior (non-VAV vs VAV states) is found as a function
of temperature. For T = T.(Hs), since &(T) is large, only
one vortex can be pinned by each antidot and the remaining
4 are compressed into a giant interstitial vortex. As T
decreases, so does £(T), vortices gain more space, and
the GV may split into a more energetically favorable
multivortex. However, further decrease of 7T makes the
holes larger in units of ¢ and enables them to capture
two vortices each. When left with only 3 vortices per
interstitial site, the unit cell imposes the square geometry
and the VAV configuration nucleates [analogous to the one
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FIG. 4 (color online). (a) The H, — T area of stability of
different VAV states for W = 600 nm, R = 110 nm, and «k =
1. (b) AT stability range of the VAV-GV state [see Fig. 3(c)] as a
function of the geometrical parameters of the antidot lattice, for
H a = Hg /2+
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FIG. 5 (color online). Magnetization as a function of the
applied current (see illustrations), in the case when VAV pairs
are present in the sample (solid dark gray dots) and when they
are not (open blue dots).

of Fig. 3(e)]. When the unit cells become too large com-
pared to the vortices, the imposed symmetry influences less
the local vortex structure and acts on a vortex lattice as a
whole. As a result, a square lattice of individual vortices is
formed.

As shown in Fig. 4(a), the VAV-GV state at H, = Hy, is
stable AT = 5%T, deep in the SC state. Being important
for experimental observation, we calculated AT for VAV
state in Pb films at H, = Hy,, for different geometrical
parameters of the antidot lattice [see Fig. 4(b)]. VAVs were
found stable for W/R = 3.81-5.76, and AT increases with
decreasing size of the unit cell and radius of the antidots.
The maximal value of AT/T, = 11.3% is obtained for
W = 400 nm and R = 100 nm. In order to securely stay
within the limits of current lithographic techniques, but
also within limitations of the GL theory, we did not de-
crease further W and R, but the tendency of even further
increase of AT is evident from Fig. 4(b). Note that similar
conclusions can be drawn from Ref. [15] for VAV stability
in mesoscopic SC squares, but the vortex-antivortex spac-
ing in our case is significantly larger than in the SC poly-
gons [ > 0.75¢, see Fig. 3(e)].

Experimental verification.—The previous temperature
stability analysis shows a better prospect for the experi-
mental verification of the predicted VAV states than
Ref. [14]. In this respect, we suggest a convenient method,
based on the response of the sample to an applied electric
current. The idea relies on the Lorentz force, which for an
applied dc current acts in the opposite direction on vortices
and antivortices, causing their annihilation (see bottom-left
inset of Fig. 5). We calculated the magnetization of a
perforated Pb film, as the flux expelled from the supercon-
ductor 20 nm above the sample, overa 1 um X 1 pum area
directly above the chosen interstitial site (47M = (h) —
H,), corresponding to a Hall probe measurement. The

results are shown in Fig. 5, for W = 800 nm and R =
100 nm, at H, = H,, for two temperatures T/T, =
0.955 and 0.935. For qualitative comparison, both magne-
tization and applied current are expressed in arbitrary units.
As one can easily recalculate and compare with Fig. 2, for
T/T,. = 0.955 we are in a VAVs equilibrium, whereas for
T/T,. = 0.935 the three vortices at interstitial sites form
triangular multivortex states (see insets of Figs. 2 and 5).
When a small current j is injected in the sample, one
expects a monotonous decrease of magnetization on j,
characteristic for SC films. However, in the VAV state,
under the influence of the Lorentz force the vortex and
the antivortex slowly approach each other and annihilate,
effectively enhancing superconductivity (increasing mag-
netization). After all VAV pairs disappear, the magnetiza-
tion curve exhibits a negative slope. At lower temperature,
when no VAVs are present, the applied current acts equally
on all vortices, and since they become smaller in size with
decreasing 7, the magnetization response linearizes—
more importantly, the M(j) curve always has a negative
slope. Therefore, the M(j) behavior for small currents can
be used as an indication of the presence of VAV states,
given by the change of slope from positive to negative.
Conventional visualization techniques (Hall probe or
Lorentz microscopy) measuring local magnetic fields and
scanning tunneling microscopy revealing the local super-
conducting density (particularly at lower temperatures) are
potential alternatives for the observation of the variety of
novel vortex states predicted in this Letter.
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