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Magnetization of Mesoscopic Superconducting Disks
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Solutions of Ginzburg-Landau equations coupled with three-dimensional Maxwell equations reveal
an intriguing magnetic response of small superconducting particles, qualitatively different from the two-
dimensional approximation but in agreement with recent experiments. Depending on the radius and
thickness, first or second order transitions are found for the normal to superconducting state. For a
sufficiently large radius of the disk, several transitions in the superconducting phase are obtained which
correspond to different angular momentum giant vortex states. The incorporation of the finite thickness
in the calculation is crucial in order to obtain agreement with the position and the size of these jumps,
and the line shape and magnitude of the magnetization curves. [S0031-9007(97)04781-9]

PACS numbers: 74.25.Ha, 74.60.Ec, 74.80.—g

Recent advances in microfabrication technology ands the ideal tool to understand the superconducting state
measurement techniques have allowed the first studies dieep inside the phase boundary.
thermodynamic properties of well controlled mesoscopic It is known that a type-ll superconducting cylinder in
superconducting particles [1-3]. The samples are mes@ magnetic field parallel to its axis can exist in three
scopic in the sense that their size is comparable to thphases of superconductivity. Belai.; we have a pure
Ginzburg-Landau (GL) coherence length. Buisstral.  superconducting state, betwegh; and H., there is the
[1] performed magnetization measurements on an ermixed state, and betweedt,., and H.; we have surface
semble of disks with large separation between them irsuperconductivity or the giant vortex state [6]. As the
order to make the dipolar interaction between the disk$eight of the cylinder is reduced, so that it becomes a
negligible. They found oscillatory behavior in the mag-disk, the magnetic field penetration into the sample is
netization near the superconducting transition temperaturdetermined by the penetration lengtlas well as the disk
and showed that the linearized Ginzburg-Landau (LGL}hickness, due to geometrical form factors. This makes
equations are able to explain qualitatively part of their exthe above simple divisions no longer applicable. Our
periments but there are some major discrepancies in sizgoblem requires a 3D solution, instead of their 2D version
and position of the jumps in the magnetization. Recentlywhich turns out to be essential in order to understand the
Geimet al. [3] used submicron Hall probes to detect theexperiments of Refs. [1,3].
magnetization ofsingle superconducting disks with size  We consider superconducting! disks (k = 0.28)
downto 0.1um. Atdifferent applied fields the disks show with radiusR and thickness! immersed in an insulating
various kinds of phase transitions within the superconductmedium. Thin film disks are known to behave as type-ll
ing state and between the superconducting and normal stasamples [7] and can be described by the GL theory [1].
which can be first or second order depending on the sampleor mesoscopia! samples (squares and thin wires), the
dimensions and temperature. The aim of this Letter is t@&sL theory has been successfully employed to explain
explain this intriguing behavior and to give a quantitativethe phase boundary [2]. Hence as a first approximation,
analysis of these magnetization experiments. neglecting the nonlocal effects, we solve the system of

A number of earlier works studied (1) disk geome-two coupled GL equat|ons
tries in the framework of the LGL equation where a uni- 1 2¢A 5
form magnetic field is assumed [1,2,4] in the disks, or 2m< inv — T) W= —a¥ - YV, (1)
(2) cylindrical geometries in the framework of the non- dar -
linear GL equations [5]. The first type of approximation VXVXA= —], 2
is reasonable if one is interested in the superconducting- -
normal state boundary where the order parameter is ver‘ﬂyhere the denS|ty of superconductmg currﬁrﬂgwen by
small and the magnetic field equals the external one. The T (q, VP — PPt ) — & |‘1’|221 3)
second type of approach is also valid away from this
boundary but does not work for disks of finite thick- The boundary conditions on the disk correspondmg to zero
ness. Here we are interested to explain the full magnekurrent density in the insulator medium is
tization curve as a function of the external magnetic field Y — @ V|, =0,

o e . o i n 4

for mesoscopic disks with finite thickness. Magnetization c
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where the subscript denotes the component normal to  Therefore, we consider the situation with a fixed value
the disk surface. The boundary condition for the vectoof the angular momentuni. for the order parameter
potential is such that far away from the superconductingl’(p) = F(r) expliL¢), when both the vector potential
disk the field equals the applied field = (0,0,H,), and the superconducting current are directed alepg
i.e.,ZlI,;ﬁoo = ¢4Hop/2. Hereéy denotes the azimuthal Then Egs. (5) and (6) are reduced to the following form:

direction andp is the radial distance from the disk center. | ¢ 9F 12 L 5
Using dimensionless variables and the London gauge™ " 5,7 5, — —2—(A) + @A) |F
e . : p dp = dp P P
divA = 0, we rewrite the system of Eqgs. (1)—(4) into the )
following form: =F(1-F), (8
(=iV — AW = w(1 — W), 5) _ 2 LA 34
op p 0p 9z2

—K2AA = %(W*W — VYV — |WPA.  (6) .
Here the distance is measured in units of the coherence = [(; - A>F2:|9(’”/R)0(2|Z|/d)’ (9)
length £ = i/ —2ma, the order parameter iy, = .
J—a/B, the vector potential inc/i/2eé, k = A/¢ is  wheref(x < 1) =1,0(x > 1) =0; A = é4A; R, d are
the GL parameter, and = c\/m/7/4eyy is the pene- the dimensionless disk radius and thickness, respectively;

tration length. We measure the magnetic fielddp =  the brackets) mean averaging over the disk thickness
chi/2eé* = k2H,, whereH, = \/[—4ma /B isthe crit-  (f(p)) = f{/;/zf(z,p)dz/d.
ical field. The difference of the Gibbs free energy The magnetic field created by the superconducting cur-

between the superconducting and the normal states megent in the disk decreases in strength away from the disk
sured inH2V /81 can be expressed through the integral as a magnetic dipole fieldd ~ 1/r°. Because of this,
5 s PR in our numerical calculations the condition for the vec-
G = ][Z(A — Ao)j — IWI*]dr /v, (7) " tor potential is transferred from infinity to the bound-
over the disk volume V — wR2d, where ;\0 _ ?ries of the sirEuIation r_eglion as follows(z, r = R,) =
- . . 2 3HoR,, Allzl = d,p) = 5 Hop, Where Ry, d, > R.,d
¢gHyp/2 is the external vector potential, and= are the sizes of the simulation region in the radial and

(V*'V¥ — WV¥*)/2i — |¥[’A is the dimensionless girections, respectively. The boundary conditions for the
superconducting current. order parameter

For thin disks, the magnetic field is uniformly dis- oF oF
tributed along thez direction. When the disk thickness - =0, p— =0, (10)
becomes comparable to the penetration length, the mag- ap lp=r ap lr—o
netic field is expelled from the disk due to the Meissnercorrespond to zero current density at the disk surface and
effect. The field penetrates only a deptlinside the disk. a finite value of the first derivative df at the disk center.
Therefore, the variation of the vector potential in the di-To solve numerically the system of Egs. (8) and (9) we
rection parallel to the applied field becomes rather strongpply a finite-difference representation of the GL and 3D
for d > A. Nevertheless, this does not lead to essentiaMaxwell equations on the space gpd, z;.
variations of the order parameter in this direction, in disks Disks in three different regimes will be considered: (1)
thinner than the coherence length. Representing the ordgrpe-Il, (2) type-I, and (3) multiple type-I behavior. When
parameter as a serieB(z, p) = >, codkmz/d)¥;(p), we compare the theoretical results with the experimental
which obeys the boundary condition (4) at the disk sideslata we have to keep in mind that experimentally the mag-
z = *d/2 and using the first GL Eq. (1), one can verify netization will depend on the filling fraction of the Hall
that the part of the order parameter which is uniform inbars used as detectors which is not exactly known. Also
the z direction, i.e., ¥, gives the main contribution to the because of the square geometry of the Hall detector whose
expansion fo7&/d)? > 1. Therefore, we may assume sides are of the same size as the diameter of the largest
a uniform order parameter along thelirection and aver- disk it will underestimate the magnetization (the flux ex-
age the first GL equation over the disk thickness. Sinceelled) of the smaller disks. These effects will result in
the order parameter does not change in zhdirection, an unknown scale factor for the magnetization of order 1.
both the superconducting current and the vector potentidh order to have a comparison of relative magnitudes such
have noz component. Then the boundary condition (4) isas the size of the jumps in magnetization, we scale the
automatically fulfilled on the upper and lower disk sides. theoretical results such that they have the same maximum

Our 3D calculations show that the disks studied experimagnetization as observed experimentally. When deter-
mentally in Ref. [1] exist in a regime of surface supercon-mining the magnetization from the LGL equation, the same
ductivity, or the giant vortex state. If the thickness of themethod as in Ref. [1] was used; we have assumed the
disks is further reduced then the giant vortex breaks ug\brikosov parameteg to be 1.0 as done in Ref. [1]. We
into many vortices if the radius of the disk is sufficiently compare our theoretical results with the experimental re-
large, even for a type-l sample. sults onA! disks at 0.4 K of Geinet al. [3] and took for the
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zero temperature coherence length) = 250 nm and the influences the superconducting state appreciably. Note
penetration lengtiA(0) = 70 nm as estimated in Ref. [3]. that the magnetic field dependence of the experimental
The disk thickness and radius are also given in Ref. [3furve is well described by the thin solid curve: (1) The
and therefore our theory does not contain any fittingslope of the magnetization curve, (2) the nonlinear be-
parameters. havior near the step in the magnetization, and (3) also
Figure 1 shows the magnetization curves for an Al diskhe magnetic field at which the step in the magnetization
of thicknessd = 0.15 um and radiuskR = 0.315 um. takes place is correctly predicted. The experiment shows
Large solid dots are the experimental data and exhibit a first order transition from the superconducting to normal
continuous superconducting-normal transition; the dottedtate at a magnetic field of 70.86 G while our calcula-
curve is the solution from the LGL equation, whereas thetions still predict a transition to thé = 1 superconduct-
thin solid curve is the numerical solution of the nonlinearing state which becomes normal at 81.5 G. The origin of
GL equations coupled to the three-dimensional Maxwelkhis small discrepancy is still not clear to us but may be
equation. The dotted curve is scaled by 0.158 and thdue to effects of disorder [8].
solid curve by 0.537. Surprisingly the dotted curve gives The magnetization curves for a disk of thickness
a line shape in closer agreement with the experimen®.15um and radius 1.2um is shown in Fig. 3. The
but its magnitude is clearly too large. There is somesymbol and the curve conventions are again the same as
improvement in the line shape (dashed curve) if we reducbefore. The dotted curve is scaled by 0.062 and the thin
the disk thickness to 0.0&m in which case the radius of solid curve by 0.775. Note that the LGL equation in this
the disk was changed to 0.3dm in order to keep the case gives the same type of discrepancies as found in
critical field the same (the magnetization was scaled byhe experiment of Buissost al.[1]. First, they found
1). Therefore, we suspect that the effective thickness athat the magnitude of the jumps in the magnetization as
the disk which is still superconducting is much smallerobtained from a solution of the LGL equation is too large
than the actual thickness. compared to the experimental results. Buissznal.
Figure 2 shows the magnetization curves for a largeargued that this was due to an ensemble averaging in their
disk of thickness 0.1m and radius 0.473&m at 0.4 K.  experiment. The single disk experiment of Ge@nal.
The same symbol and curve conventions are used as miles out this possibility. It is true that the magnitude of
the previous figure. The dotted curve is scaled by 0.124he jumps in the single disk experiment is much larger
and the thin solid curve by 0.581. It is obvious that thethan in the many disk experiment, but still, for the single
dotted curve is very different in shape and magnitude andisk, the jumps are much smaller than those obtained from
shows a jump in magnetization at a very different valuea solution of the LGL equation (compare the dotted curve
compared to the experimental curve. This clearly demonwith the experimental data in Fig. 3). Our thin solid curve
strates that a LGL equation with a homogeneous magnetigives precisely the same magnitude for the jumps in the
field distribution over the disk is not appropriate in this magnetization as in the experiment and also the correct
case. The finite thickness of the disk results in very im-magnitude of magnetization and magnetic field for most
portant geometrical corrections to the field profile whichof the transitions. Second, they found that the position of
the first jump in the magnetization obtained from the LGL
equation is much below that of the experimental curve.
No proper explanation could be given for this. Our dotted
curve gives similar discrepancy of approximately the same
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FIG. 1. Magnetization versus the external magnetic field for ',/ - ™
a superconducting disk of radis = 0.315 um and thickness 0.0 . . . , - . ASadhraadied
d=0.15pum at7T = 0.4 K. Solid dots are the experimental 0 20 40 60 80
data from Ref. [3]. We show the results of the GL theory Magnetic field (Gauss)

including the 3D Maxwell equation (solid curve, and dashed
curve forR = 0.31 um andd = 0.07 um, respectively), and FIG. 2. The same as Fig. 1 but now for a disk with radius
the result for the LGL theory (dotted curve). R = 0.473 pm and thicknesg/ = 0.15 um.
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10 of the equilibrium superconducting state and the magnetic
- field is also indicated. FofL # O there is substantial
penetration of the magnetic field in the center of the disk
while a ringlike region near the edge of the disk remains
superconducting.

All along we have assumed that the system evolves
along the free energy minimum and obtained quantitative
gmmmm——— . ] agreement for the position, magnitude, and periodicity of
v Distance from centter of disk (um) the jumps in the magnetization as well as the absolute value
v, of the magnitude of magnetization. But there is one dis-

“ crepancy. Note that the theoretical curves in Fig. 3 show a
k critical field which is appreciably smaller than found ex-
P perim_entally and the total number of jumps in the experi-
Magnetic field (Gauss) ment is 19 cpmpared to 11 in the theory. When we enlarge

the disk radius from 1.2em to 1.57 um, the number of
FIG. 3. The same as Fig. 1 for a disk of radiRs= 1.2 um  jumps in the magnetization curve is increased to 19 but
and thickness/ = 0.15 um. In the inset we show the field na ypper critical field is reduced to 63 G. It is also to be

distribution in the plane through the center of the disk for ted that the s fth . tal d
different values of the external magnetic field. Far away from"©0t€0 that the siope of the experimental curve aecreases

the center of the disk the magnetic field equals the externalVith increasing field and tends to become parallel to the
magnetic field. field axis at higher magnetic fields. In finite systems the

Bean-Livingston barrier [9] at the surface can cause the
magnitude and the thin solid curve settles this disputesystem not to evolve along the free energy minimum. It
The first jump coincides with that of the experimentalleads to jumps in the magnetization at a much larger value
curve. We find that if we keep the radius unchanged andf the magnetic field compared to the value at which the
decrease the disk thickness then the upper critical field antl = 1 state becomes the ground state. We have to de-
the number of jumps in the magnetization curve remaircrease the width of the disk to an unreasonable value of
unchanged. Only the position of the first peak shifts0.06 wm in order to have the first jump at the same posi-
towards lower magnetic field which will of course also leadtion as that seen in the experiment for the same disk radius.
to an increase in the magnetic field spacing at which th@&ut, as discussed before, such a decrease in thickness does
jumps in magnetization occurs. This obviously is due tonot increase the critical field and cannot explain the high
the fact that as the disk thickness is reduced the magnetfeeld discrepancy. Itis also known that surface defects can
field inside the disk increases at a faster rate and so th#estroy the Bean-Livingston barrier for increasing fields.
transition to the first fluxoid state occurs at lower applied This work is supported by Flemish Science Foundation
fields. Near the critical field of course the field inside doegFWO-VI) Grant No. G.0232.96, the European INTAS-
not depend on the thickness and is the same as the exter®d-1495-ext project, and the Belgian Inter-University
field. This once again shows that the demagnetizatiodttraction Poles (IUAP-VI). One of us (P.S.D.) is sup-
factor is crucial for these disks and they determine largelyorted by the University of Antwerp.
the shape of the magnetization curves. Another interesting
point to be noted is that the experimental curve shows a
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the LGL theory the flux quantization condition does not 630090. RUSSia.
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