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Magnetization of Mesoscopic Superconducting Disks
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Solutions of Ginzburg-Landau equations coupled with three-dimensional Maxwell equations r
an intriguing magnetic response of small superconducting particles, qualitatively different from the
dimensional approximation but in agreement with recent experiments. Depending on the radiu
thickness, first or second order transitions are found for the normal to superconducting state.
sufficiently large radius of the disk, several transitions in the superconducting phase are obtained
correspond to different angular momentum giant vortex states. The incorporation of the finite thic
in the calculation is crucial in order to obtain agreement with the position and the size of these ju
and the line shape and magnitude of the magnetization curves. [S0031-9007(97)04781-9]
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Recent advances in microfabrication technology an
measurement techniques have allowed the first studies
thermodynamic properties of well controlled mesoscop
superconducting particles [1–3]. The samples are me
scopic in the sense that their size is comparable to t
Ginzburg-Landau (GL) coherence length. Buissonet al.
[1] performed magnetization measurements on an e
semble of disks with large separation between them
order to make the dipolar interaction between the dis
negligible. They found oscillatory behavior in the mag
netization near the superconducting transition temperatu
and showed that the linearized Ginzburg-Landau (LGL
equations are able to explain qualitatively part of their e
periments but there are some major discrepancies in s
and position of the jumps in the magnetization. Recent
Geim et al. [3] used submicron Hall probes to detect th
magnetization ofsingle superconducting disks with size
down to 0.1mm. At different applied fields the disks show
various kinds of phase transitions within the supercondu
ing state and between the superconducting and normal s
which can be first or second order depending on the sam
dimensions and temperature. The aim of this Letter is
explain this intriguing behavior and to give a quantitativ
analysis of these magnetization experiments.

A number of earlier works studied (1) disk geome
tries in the framework of the LGL equation where a un
form magnetic field is assumed [1,2,4] in the disks, o
(2) cylindrical geometries in the framework of the non
linear GL equations [5]. The first type of approximation
is reasonable if one is interested in the superconductin
normal state boundary where the order parameter is v
small and the magnetic field equals the external one. T
second type of approach is also valid away from th
boundary but does not work for disks of finite thick
ness. Here we are interested to explain the full magn
tization curve as a function of the external magnetic fie
for mesoscopic disks with finite thickness. Magnetizatio
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is the ideal tool to understand the superconducting st
deep inside the phase boundary.

It is known that a type-II superconducting cylinder in
a magnetic field parallel to its axis can exist in thre
phases of superconductivity. BelowHc1 we have a pure
superconducting state, betweenHc1 and Hc2 there is the
mixed state, and betweenHc2 and Hc3 we have surface
superconductivity or the giant vortex state [6]. As th
height of the cylinder is reduced, so that it becomes
disk, the magnetic field penetration into the sample
determined by the penetration lengthl as well as the disk
thickness, due to geometrical form factors. This mak
the above simple divisions no longer applicable. O
problem requires a 3D solution, instead of their 2D versio
which turns out to be essential in order to understand t
experiments of Refs. [1,3].

We consider superconductingAl disks sk ­ 0.28d
with radiusR and thicknessd immersed in an insulating
medium. Thin film disks are known to behave as type-
samples [7] and can be described by the GL theory [
For mesoscopicAl samples (squares and thin wires), th
GL theory has been successfully employed to expla
the phase boundary [2]. Hence as a first approximatio
neglecting the nonlocal effects, we solve the system
two coupled GL equations.

1
2m

µ
2ih̄ $= 2

2e $A
c

∂2

C ­ 2aC 2 bCjCj2, (1)

$= 3 $= 3 $A ­
4p

c
$j , (2)

where the density of superconducting current$j is given by

$j ­
eh̄
im

sCp $=C 2 C $=Cpd 2
4e2

mc
jCj2 $A . (3)

The boundary conditions on the disk corresponding to ze
current density in the insulator medium is√

2ih̄ $= 2
2e $A

c

!
Cjn ­ 0 , (4)
© 1997 The American Physical Society 4653



VOLUME 79, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 8 DECEMBER1997

ue

l

:

ely;
s

ur-
isk

c-
-

he

and

e
D

1)
n
tal

ag-
l
lso
ose
gest
x-
in
1.
ch

the
um

ter-
e

the

re-
where the subscriptn denotes the component normal to
the disk surface. The boundary condition for the vect
potential is such that far away from the superconductin
disk the field equals the applied field$H ­ s0, 0, H0d,
i.e., $Aj $r!` ­ $efH0ry2. Here $ef denotes the azimuthal
direction andr is the radial distance from the disk center

Using dimensionless variables and the London gau
div $A ­ 0, we rewrite the system of Eqs. (1)–(4) into the
following form:

s2i $= 2 $Ad2C ­ Cs1 2 jCj2d , (5)

2k2n $A ­
1
2i

sCp $=C 2 C $=Cpd 2 jCj2 $A . (6)

Here the distance is measured in units of the coheren
length j ­ h̄y

p
22ma, the order parameter inc0 ­p

2ayb, the vector potential inch̄y2ej, k ­ lyj is
the GL parameter, andl ­ c

p
mypy4ec0 is the pene-

tration length. We measure the magnetic field inHc2 ­
ch̄y2ej2 ­ k

p
2Hc, whereHc ­

p
24payb is the crit-

ical field. The difference of the Gibbs free energyG
between the superconducting and the normal states m
sured inH2

c Vy8p can be expressed through the integral

G ­
Z

f2s $A 2 $A0d$j 2 jCj4g d $ryV , (7)

over the disk volume V ­ pR2d, where $A0 ­
$efH0ry2 is the external vector potential, and$j ­
sCp $=C 2 C $=Cpdy2i 2 jCj2 $A is the dimensionless
superconducting current.

For thin disks, the magnetic field is uniformly dis-
tributed along thez direction. When the disk thickness
becomes comparable to the penetration length, the m
netic field is expelled from the disk due to the Meissne
effect. The field penetrates only a depthl inside the disk.
Therefore, the variation of the vector potential in the d
rection parallel to the applied field becomes rather stro
for d . l. Nevertheless, this does not lead to essent
variations of the order parameter in this direction, in disk
thinner than the coherence length. Representing the or
parameter as a seriesCsz, $rd ­

P
k cosskpzyddCks $rd,

which obeys the boundary condition (4) at the disk side
z ­ 6dy2 and using the first GL Eq. (1), one can verify
that the part of the order parameter which is uniform i
the z direction, i.e.,C0 gives the main contribution to the
expansion forspjydd2 ¿ 1. Therefore, we may assume
a uniform order parameter along thez direction and aver-
age the first GL equation over the disk thickness. Sin
the order parameter does not change in thez direction,
both the superconducting current and the vector poten
have noz component. Then the boundary condition (4) i
automatically fulfilled on the upper and lower disk sides

Our 3D calculations show that the disks studied expe
mentally in Ref. [1] exist in a regime of surface supercon
ductivity, or the giant vortex state. If the thickness of th
disks is further reduced then the giant vortex breaks
into many vortices if the radius of the disk is sufficiently
large, even for a type-I sample.
4654
or
g

.
ge

ce

ea-

ag-
r

i-
ng
ial
s
der

s

n

ce

tial
s
.
ri-
-

e
up

Therefore, we consider the situation with a fixed val
of the angular momentumL for the order parameter
Cs $rd ­ Fsrd expsiLfd, when both the vector potentia
and the superconducting current are directed along$ef.
Then Eqs. (5) and (6) are reduced to the following form

2
1
r

≠

≠r
r

≠F
≠r

1

√
L2

r2
2 2

L
r

kAl 1 kA2l

!
F

­ Fs1 2 F2d , (8)

2k2

√
≠

≠r

1
r

≠rA
≠r

1
≠2A
≠z2

!

­

"√
L
r

2 A

!
F2

#
usryRdus2jzjydd , (9)

whereusx , 1d ­ 1, usx . 1d ­ 0; $A ­ $efA; R, d are
the dimensionless disk radius and thickness, respectiv
the bracketsk l mean averaging over the disk thicknes
kfsrdl ­

Rdy2
2dy2 fsz, rd dzyd.

The magnetic field created by the superconducting c
rent in the disk decreases in strength away from the d
as a magnetic dipole field:H , 1yr3. Because of this,
in our numerical calculations the condition for the ve
tor potential is transferred from infinity to the bound
aries of the simulation region as follows:Asz, r ­ Rsd ­
1
2 H0Rs, Asjzj ­ ds, rd ­

1
2 H0r, where Rs, ds ¿ R, d

are the sizes of the simulation region in the radial andz
directions, respectively. The boundary conditions for t
order parameter

≠F
≠r

Ç
r­R

­ 0, r
≠F
≠r

Ç
r­0

­ 0 , (10)

correspond to zero current density at the disk surface
a finite value of the first derivative ofF at the disk center.
To solve numerically the system of Eqs. (8) and (9) w
apply a finite-difference representation of the GL and 3
Maxwell equations on the space gridri , zj .

Disks in three different regimes will be considered: (
type-II, (2) type-I, and (3) multiple type-I behavior. Whe
we compare the theoretical results with the experimen
data we have to keep in mind that experimentally the m
netization will depend on the filling fraction of the Hal
bars used as detectors which is not exactly known. A
because of the square geometry of the Hall detector wh
sides are of the same size as the diameter of the lar
disk it will underestimate the magnetization (the flux e
pelled) of the smaller disks. These effects will result
an unknown scale factor for the magnetization of order
In order to have a comparison of relative magnitudes su
as the size of the jumps in magnetization, we scale
theoretical results such that they have the same maxim
magnetization as observed experimentally. When de
mining the magnetization from the LGL equation, the sam
method as in Ref. [1] was used; we have assumed
Abrikosov parameterb to be 1.0 as done in Ref. [1]. We
compare our theoretical results with the experimental
sults onAl disks at 0.4 K of Geimet al. [3] and took for the
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zero temperature coherence lengthjs0d ­ 250 nm and the
penetration lengthls0d ­ 70 nm as estimated in Ref. [3].
The disk thickness and radius are also given in Ref. [
and therefore our theory does not contain any fittin
parameters.

Figure 1 shows the magnetization curves for an Al dis
of thicknessd ­ 0.15 mm and radiusR ­ 0.315 mm.
Large solid dots are the experimental data and exhibi
continuous superconducting-normal transition; the dott
curve is the solution from the LGL equation, whereas th
thin solid curve is the numerical solution of the nonlinea
GL equations coupled to the three-dimensional Maxwe
equation. The dotted curve is scaled by 0.158 and t
solid curve by 0.537. Surprisingly the dotted curve give
a line shape in closer agreement with the experime
but its magnitude is clearly too large. There is som
improvement in the line shape (dashed curve) if we redu
the disk thickness to 0.07mm in which case the radius of
the disk was changed to 0.31mm in order to keep the
critical field the same (the magnetization was scaled
1). Therefore, we suspect that the effective thickness
the disk which is still superconducting is much smalle
than the actual thickness.

Figure 2 shows the magnetization curves for a larg
disk of thickness 0.15mm and radius 0.473mm at 0.4 K.
The same symbol and curve conventions are used as
the previous figure. The dotted curve is scaled by 0.1
and the thin solid curve by 0.581. It is obvious that th
dotted curve is very different in shape and magnitude a
shows a jump in magnetization at a very different valu
compared to the experimental curve. This clearly demo
strates that a LGL equation with a homogeneous magne
field distribution over the disk is not appropriate in thi
case. The finite thickness of the disk results in very im
portant geometrical corrections to the field profile whic

FIG. 1. Magnetization versus the external magnetic field f
a superconducting disk of radiusR ­ 0.315 mm and thickness
d ­ 0.15 mm at T ­ 0.4 K. Solid dots are the experimenta
data from Ref. [3]. We show the results of the GL theor
including the 3D Maxwell equation (solid curve, and dashe
curve for R ­ 0.31 mm and d ­ 0.07 mm, respectively), and
the result for the LGL theory (dotted curve).
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influences the superconducting state appreciably. No
that the magnetic field dependence of the experimen
curve is well described by the thin solid curve: (1) Th
slope of the magnetization curve, (2) the nonlinear b
havior near the step in the magnetization, and (3) al
the magnetic field at which the step in the magnetizatio
takes place is correctly predicted. The experiment show
a first order transition from the superconducting to norm
state at a magnetic field of 70.86 G while our calcula
tions still predict a transition to theL ­ 1 superconduct-
ing state which becomes normal at 81.5 G. The origin
this small discrepancy is still not clear to us but may b
due to effects of disorder [8].

The magnetization curves for a disk of thicknes
0.15 mm and radius 1.2mm is shown in Fig. 3. The
symbol and the curve conventions are again the same
before. The dotted curve is scaled by 0.062 and the th
solid curve by 0.775. Note that the LGL equation in thi
case gives the same type of discrepancies as found
the experiment of Buissonet al. [1]. First, they found
that the magnitude of the jumps in the magnetization
obtained from a solution of the LGL equation is too larg
compared to the experimental results. Buissonet al.
argued that this was due to an ensemble averaging in th
experiment. The single disk experiment of Geimet al.
rules out this possibility. It is true that the magnitude o
the jumps in the single disk experiment is much large
than in the many disk experiment, but still, for the singl
disk, the jumps are much smaller than those obtained fro
a solution of the LGL equation (compare the dotted curv
with the experimental data in Fig. 3). Our thin solid curv
gives precisely the same magnitude for the jumps in th
magnetization as in the experiment and also the corre
magnitude of magnetization and magnetic field for mo
of the transitions. Second, they found that the position
the first jump in the magnetization obtained from the LG
equation is much below that of the experimental curv
No proper explanation could be given for this. Our dotte
curve gives similar discrepancy of approximately the sam

FIG. 2. The same as Fig. 1 but now for a disk with radiu
R ­ 0.473 mm and thicknessd ­ 0.15 mm.
4655
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FIG. 3. The same as Fig. 1 for a disk of radiusR ­ 1.2 mm
and thicknessd ­ 0.15 mm. In the inset we show the field
distribution in the plane through the center of the disk fo
different values of the external magnetic field. Far away fro
the center of the disk the magnetic field equals the extern
magnetic field.

magnitude and the thin solid curve settles this dispu
The first jump coincides with that of the experimenta
curve. We find that if we keep the radius unchanged a
decrease the disk thickness then the upper critical field a
the number of jumps in the magnetization curve rema
unchanged. Only the position of the first peak shif
towards lower magnetic field which will of course also lea
to an increase in the magnetic field spacing at which t
jumps in magnetization occurs. This obviously is due
the fact that as the disk thickness is reduced the magne
field inside the disk increases at a faster rate and so
transition to the first fluxoid state occurs at lower applie
fields. Near the critical field of course the field inside doe
not depend on the thickness and is the same as the exte
field. This once again shows that the demagnetizati
factor is crucial for these disks and they determine large
the shape of the magnetization curves. Another interest
point to be noted is that the experimental curve shows
gradually decreasing interval of magnetic field at whic
the jumps occur. It was shown in Ref. [4] that within
the LGL theory the flux quantization condition does no
imply that the jumps in the magnetization will occur a
regular intervals. As long as the order parameter at t
central region of the disk is not negligible, the interva
will decrease slowly and hence only for large values o
L the interval will be the same as that given by th
flux quantization condition. But our 3D solution show
a more drastic decrease in the interval. The reason
that at smaller fields the field inside the disk changes ve
slowly. In fact there is even a small regime where th
field at the center of the disk can decrease with increasi
applied field (see curves forL ­ 1 and L ­ 2 in the
inset of Fig. 3). In the inset of Fig. 3 we have plotte
the magnetic field distributionHsr, z ­ 0, u ­ 0d of the
system considered in Fig. 3 for ten values of the applie
field. The corresponding value of the angular momentu
4656
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of the equilibrium superconducting state and the magne
field is also indicated. ForL fi 0 there is substantial
penetration of the magnetic field in the center of the dis
while a ringlike region near the edge of the disk remain
superconducting.

All along we have assumed that the system evolve
along the free energy minimum and obtained quantitativ
agreement for the position, magnitude, and periodicity o
the jumps in the magnetization as well as the absolute val
of the magnitude of magnetization. But there is one dis
crepancy. Note that the theoretical curves in Fig. 3 show
critical field which is appreciably smaller than found ex
perimentally and the total number of jumps in the exper
ment is 19 compared to 11 in the theory. When we enlarg
the disk radius from 1.2mm to 1.57mm, the number of
jumps in the magnetization curve is increased to 19 b
the upper critical field is reduced to 63 G. It is also to b
noted that the slope of the experimental curve decreas
with increasing field and tends to become parallel to th
field axis at higher magnetic fields. In finite systems th
Bean-Livingston barrier [9] at the surface can cause th
system not to evolve along the free energy minimum.
leads to jumps in the magnetization at a much larger valu
of the magnetic field compared to the value at which th
L ­ 1 state becomes the ground state. We have to d
crease the width of the disk to an unreasonable value
0.06mm in order to have the first jump at the same pos
tion as that seen in the experiment for the same disk radiu
But, as discussed before, such a decrease in thickness d
not increase the critical field and cannot explain the hig
field discrepancy. It is also known that surface defects ca
destroy the Bean-Livingston barrier for increasing fields.
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